The Law of Large Numbers in a Metric Space with a Convex Combination Operation
نویسندگان
چکیده
We consider a separable complete metric space equipped with a convex combination operation. For such spaces, we identify the corresponding convexification operator and show that the invariant elements for this operator appear naturally as limits in the strong law of large numbers. It is shown how to uplift the suggested construction to work with subsets of the basic space in order to develop a systematic way of proving laws of large numbers for such operations with random sets.
منابع مشابه
On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملA NEW APPROACH OF FUZZY NUMBERS WITH DIFFERENT SHAPES AND DEVIATION
In this paper, we propose a new method for fuzzy numbers. In this method, we assume that Ai= (ai1, ai2, ai3, ai4) is to be a fuzzy number. So, the convex combination of ai1 and ai2 and also the convex combination of ai3 and ai4 are obtained separately. Then, Mic and Mis that are to be the convex combinations and the standard deviation respectively we acquire them from these components. Finally,...
متن کاملIterative Process for an α- Nonexpansive Mapping and a Mapping Satisfying Condition(C) in a Convex Metric Space
We construct one-step iterative process for an α- nonexpansive mapping and a mapping satisfying condition (C) in the framework of a convex metric space. We study △-convergence and strong convergence of the iterative process to the common fixed point of the mappings. Our results are new and are valid in hyperbolic spaces, CAT(0) spaces, Banach spaces and Hilbert spaces, simultaneously.
متن کاملOn generalized fuzzy numbers
This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so that the generalized fuzzy numbers are integrat...
متن کاملOrthogonal metric space and convex contractions
In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath might be called their definitive versions. Also, we show that there are examples which show that our main theorems are genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour, {it Approximate fixed points of generalized convex contractions}, Fixed Poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005